Share This

Showing posts with label Antibiotic resistance. Show all posts
Showing posts with label Antibiotic resistance. Show all posts

Monday 5 May 2014

WHO's Alarm Bells: Antibiotic Resistance Now a 'Major Threat to Public Health'

The world's leading health organization is sounding serious alarm bells about the problem of antibiotic resistance.


In its first report on the issue ever, the World Health Organization (WHO) is sounding alarms about the issue of antibiotic resistance and the global public health threats it poses to our increasingly interconnected world.

"The problem is so serious that it threatens the achievements of modern medicine. A post-antibiotic era—in which common infections and minor injuries can kill—is a very real possibility for the 21st century," the report states.

Antibiotic resistance occurs when bacteria no longer die when treated with antibiotics. As a result, doctors have to use stronger, more potent antibiotics, and the more those are used, the more resistance bacteria develop to those as well. The WHO is warning that we're reaching a point in which the strongest antibiotics doctors have in their arsenal, the "treatment of last resort" drugs as they're called, no longer work.

And in fact, it's no longer just bacteria that are becoming resistant. The WHO has stopped referring to the problem as "antibiotic resistance" and now calls it "antimicrobial resistance," to encompass other organisms, such as viruses and parasites, that no longer respond to the drugs of choice. Namely, treating the viruses tuberculosis and HIV, and malaria (a parasite), has become harder as these diseases become resistant to medications. Even H1N1, the so-called "swine flu" that reached pandemic levels in 2009, has begun developing resistance to potent antiviral drugs.

Resistance Is a Worldwide Problem

One of the major points of the report is that diseases that used to be restricted to certain locales are now spreading internationally:

Among their key findings:
• Resistance to the treatment of last resort for life-threatening infections caused by a common intestinal bacteria, Klebsiella pneumonia—carbapenem antibiotics—has spread to all regions of the world. K. pneumoniae is a major cause of hospital-acquired infections such as pneumonia, bloodstream infections, infections in newborns and intensive-care unit patients. In some countries, because of resistance, carbapenem antibiotics would not work in more than half of people treated for K. pneumoniae infections.

• Treatment failure to the last resort of treatment for gonorrhea—third generation cephalosporins—has been confirmed in Austria, Australia, Canada, France, Japan, Norway, Slovenia, South Africa, Sweden and the United Kingdom. More than 1 million people are infected with gonorrhoea around the world every day.

• People with MRSA (methicillin-resistant Staphylococcus aureus) are estimated to be 64 percent more likely to die than people with a non-resistant form of the infection. MRSA, which can cause septic bloodstream infections when exposed to broken skin, is one of the most common "community-acquired" resistant infections, meaning you're likely to pick it up anywhere other people are—your gym, place of worship, a nearby park or even at schools. In the Americas, as many as 90 percent of staph infections are reported to be MRSA.

• There hasn't been a new class of antibiotics developed since the late 1980s.

We Can't Track What We Don't Know

The WHO is calling on countries all over the world to step up their surveillance of these deadly infections, something that happens rarely, if at all. An investigative report, "Hunting the Nightmare Bacteria," that ran on the PBS program Frontline in October 2013 revealed that public health officials in the U.S. have little to no data on the extent of antimicrobial resistance in this country. Healthcare facilities aren't required to report outbreaks, the report found, and many don't because they don't want to scare people or have to deal with bad PR.

“It is frankly embarrassing that we as a country do not know where resistance is occurring, how bad the problem is for various organisms or who’s using what antibiotics when,” Brad Spellberg, MD, an infectious disease doctor at Harbor-UCLA Medical Center, said in the documentary.

The Centers for Disease Control and Prevention has estimated that antimicrobial resistant infections hit two million people a year and kill at least 23,000. But the WHO notes that in most countries around the world, including the U.S., often only the most severe infections are documented and minor community-acquired infections (which can get passed along repeatedly and wind up as a severe infection) go unreported.

Clean Up the Food Supply!

For quite possibly the first time, the WHO also called out the food industry for its contribution to antimicrobial resistance. " The use of antibiotics in animal husbandry—including in livestock, poultry and fish farming—are leading to increasing recognition that urgent action is needed to avoid inappropriate use, and to reduce antibiotic usage in animal husbandry and aquaculture, as well as in humans," the report states. In the U.S., 80 percent of antibiotics sold go into animal feed to prevent infections in healthy animals or to speed growth. And we're not alone. "In many countries, the total amount of antibiotics used in animals (both food-producing and companion animals), measured as gross weight, exceeds the quantity used in the treatment of disease in humans," the authors found.

The same classes of antibiotics used on these animals are the same as those given to humans. In particular, fluoroquinolones, antibiotics used widely in the poultry industry, are increasingly ineffective against urinary tract infections caused by drug-resistant E. coli bacteria, which have been detected on all forms of supermarket meat, and against MRSA soft-tissue and skin infections.

Numerous groups in the U.S. have sued the Food and Drug Administration to revoke its approvals in animals for antibiotics that are valuable for humans. The agency's only response has been to set voluntary guidelines for the industry.

What You Can Do

Despite the damage factory farming has done to antibiotic effectiveness, the WHO and other public health officials insist that the first line of defense in controlling the problem of antimicrobial resistance is the healthcare setting: Stopping doctors from giving patients antibiotics for conditions they aren't designed to treat, for instance, when you're given antibiotics for a cold that's caused by a virus, not bacteria.

• Don't automatically ask for antibiotics when you feel sick and visit a doctor.

• If your doctor prescribes an antibiotic, ask if there's an alternative before just accepting the advice. Some doctors feel compelled to offer the drugs to make people feel better, but asking for an alternative can open up a dialogue about other options.

• When you do need an antibiotic, take the full course, even if you're feeling better.

• Wash your hands frequently to protect yourself from community-acquired infections, and keep your hands away from your nose, eyes and mouth, where infections can enter.

Contributed by  By EMILY MAIN

 Where Health Meets Life


Alarm bells over antibiotic resistance 

The World Health Organisation’s most comprehensive report to date sounds a warning that we are entering a world where antibiotics have little effect.

THE World Health Organisation (WHO) has sounded a warning that many types of disease-causing bacteria can no longer be treated with the usual antibiotics and the benefits of modern medicine are increasingly being eroded.

The comprehensive 232-page report on anti-microbial resistance with data from 114 countries shows how this threat is happening now in every region of the world and can affect anyone in any country.

Antibiotic resistance – when bacteria evolve so that antibiotics no longer work to treat infections – is described by the report as “a problem so serious that it threatens the achievements of modern medicine”.

“A post-antibiotic era, in which common infections and minor injuries can kill, far from being an apocalyptic fantasy, is instead a very real possibility for the 21st century,” said Dr Keiji Fukuda, WHO assistant director-general who coordinates its work on anti-microbial resistance.

“Without urgent, coordinated action, the world is headed for a post-antibiotic era in which common infections and minor injuries which have been treatable for decades can once again kill.

“Effective antibiotics have been one of the pillars allowing us to live longer, live healthier, and benefit from modern medicine.

“Unless we take significant actions to improve efforts to prevent infections and also change how we produce, prescribe and use antibiotics, the world will lose more and more of these global public health goods and the implications will be devastating.”

The report, “Antimicrobial Resistance: Global Report on Surveillance”, shows that resistance is occurring in many bacteria causing different infections.

It focuses on antibiotic resistance in seven bacteria responsible for common, serious diseases, such as bloodstream infections (sepsis), diarrhoea, pneumonia, urinary tract infections and gonorrhoea.

What is especially alarming is that the bacteria’s resistance has also breached “last resort” antibiotics, which are the most powerful medicines that doctors resort to when the usual ones do not work.

When patients do not respond to the usual medicines (known as first-line or first-generation medicines), doctors prescribe newer (second line medicines) which also usually also cost more.

When these also don’t work, newer and often more powerful (but sometimes with also more side effects) antibiotics are used, and they are even more expensive.

If these third-line or “last resort” medicines are not available or too costly for the patient, or if they don’t work on a patient because of antibiotic resistance, the patient remains ill or dies if the infection is a serious one.

New antibiotics have been discovered in the past to treat infections when the old ones became useless due to resistance.

But these discoveries dried up in the past 25 years.

The last completely new classes of anti-bacterial drugs were discovered in the 1980s.

Pathogens that are becoming increasingly resistant including to the more powerful antibiotics include E. coli, K. pneumonia, S. aureus, S. pneumonia, salmonelia, shigella and n. gonorrhoeae.

Key findings from the report include:

> Resistance to the treatment of last resort for life-threatening infections caused by a common intestinal bacteria, K. pneumonia — carbapenem antibiotics — has spread worldwide.

K. pneumoniae is a major cause of hospital-acquired infections such as pneumonia, bloodstream infections, infections in newborns and intensive-care unit patients.

In some countries, because of resistance, carbapenem antibiotics would not work in more than half of people treated for K. pneumoniae infections;

> Resistance to one of the most widely used antibacterial medicines for the treatment of urinary tract infections caused by E. coli – fluoroquinolones – is very widespread.

In the 1980s, when these drugs were first introduced, resistance was virtually zero.

In many countries today, this treatment is ineffective in more than half of patients;

> The sexually transmitted disease, gonorrhoea may soon be untreatable unless there are new drugs. Treatment failure to the last resort of treatment for gonorrhoea – third generation cephalosporins – has been confirmed in several countries; and

> Antibiotic resistance causes people to be sick for longer and increases the risk of death.

For example, people with MRSA (methicillin-resistant Staphylococcus aureus) are estimated to be 64% more likely to die than people with a non-resistant form of the infection.

There are many cases of patients being infected by MRSA in hospitals.

The report also gives useful information on the worrisome building up of resistance in four serious diseases — tuberculosis, malaria, HIV and influenza.

A major factor accelerating resistance is in the animal husbandry sector, where there is a liberal use of antibiotics mainly to promote the growth of the animals used for food, for commercial purposes.

This builds up resistance in the bacteria present in the animals.

These resistant germs are passed on to humans who consume the meat.

The report has a small section on the animal-food chain, which has been identified as a major problem.

The European Union has banned the use of antibiotics as growth promoters in animals, but it is still allowed in other countries.

A WHO press release on the report calls for some actions. These include:

> Setting up basic systems in countries to track and monitor the problem;

> Preventing infections from happening in the first place to reduce the need for antibiotics;

> Only prescribing and dispensing antibiotics when they are truly needed, and prescribing and dispensing the right antibiotic(s) to treat the illness;

> Patients using antibiotics only when prescribed by a doctor and completing the full prescription; and

> Developing new diagnostics, antibiotics and other tools to stay ahead of emerging resistance.

Contributed by Global Trends by Martin Khor

Martin Khor is executive director of the South Centre, a research centre of 51 developing countries, based in Geneva. You can e-mail him at director@southcentre.org. The views expressed are entirely his own.

Related posts: 

Thursday 20 February 2014

Do You need jabs, antibiotics?


OUR population is getting more and more educated and knowledgeable. With the convenience of internet and smart phone, information can be assessed anytime and anywhere.

Facebook and Google have become the source of reference for most people. Many can now be “experts” in many specialised fields, including engineering, law and even medicine.

Nowadays, the medical practitioners enounter some patients who are so-called internet savvy, and refuse antibiotics and vaccines.

This issue arose due to the spread of such information in the internet, claiming antibiotics could lead to “superbug” and are associated with many adverse effects, while vaccines could cause autism or death.

Well, the risks of administration of both drugs are certainly debatable.

What we know for a fact is that since Alexander Flemming discovered penicillin and the pox vaccine, many lives were saved.

Nevertheless, I am not in the position to comment on the good and bad of both antibiotics and vaccines. But, it is more important for the general public to understand more about the need for antibiotics and vaccines.

Antibiotics or more specifically antibacterial, is a medicine indicated to kill (bactericidal) or inhibit the growth (bacteriostatic) of the bacteria.

There are various types of antibiotics with different mode of actions and indications. Strictly speaking, the mechanism of action for antibiotics is rather complicated.

However, it works mainly to counter attack the rapid reproduction of bacterial colonies, so that our immune system has enough time to defeat the illness.

Thus, the usage of antibiotics is strictly limited to the bacterial infection. In common clinical conditions, like acute exudative tonsillitis, abscess formation and urinary tract infection, antibiotics are strongly prescribed.

It must be understood that antibiotics have no role in curing diseases caused by fungus, virus or other parasites.

Therefore, it should not be overprescribed in cases like common cough and cold, flu and fungal infection of skin.

As for vaccines, they are biological preparations that help to boost immunity. Its primary focus is on disease prevention. It is always better to prevent a disease than to treat it.

Vaccines work by introducing the weakened form of “disease germ” into the body. The body will respond by producing antibodies to fight these invaders. At this stage, technically, the immune system is being sensitised. If the actual disease germ attacks the body, more antibodies will be produced to destroy the real enemy.

Vaccines are responsible for the control of many infectious diseases that were once common in this country and around the world, including polio, measles, diphtheria, pertussis (whooping cough), rubella (German measles), mumps, tetanus, Hepatitis B and Haemophilus influenzae type b (Hib).

Many patients question the need for further vaccination as diseases such as diphtheria, pertussis are very rare these days.

Furthermore, there are people that do not get vaccination, yet able to live healthily until old age. This is the myth behind “herd immunity”.

Herd immunity serves as a preventive barrier as most of the population had been vaccinated, thus, the disease is contained from spreading. If herd immunity is compromised, the widespread of the disease may occur.

A piece of advice to all, a little knowledge is a dangerous thing. Before you start to tell doctors about the negative effects of antibiotics and vaccines, why not, give them a chance to explain to you before you make a decision.

Contributed by DR H.B. CHEE, Muar, Johor The Star/Asia News Network

Related posts:
1.Love your liver! World Hepatitis Day today
2. Life is not meant to be lived alone

Wednesday 21 March 2012

Are antibiotics an end to modern medicine?

A warning by the head of WHO that antibiotic resistance is so serious that it may lead to an end to modern medicine should alert health authorities to contain this most serious health crisis.

A schematic representation of how antibiotic r...
A schematic representation of how antibiotic resistance is enhanced by natural selection (Photo credit: Wikipedia)
LAST week, the head of the World Health Organisation (WHO) sounded a large alarm bell on how antibiotics may in future not work anymore, due to resistance of bacteria to the medicines.

Antibiotic resistance has been a growing problem for some time now. From time to time, there will be news reports of the outbreak of diseases, old and new, that cannot be treated because the bacteria have grown more powerful than the antibiotics used against them.

And experts have been warning about how the wrong use of antibiotics has given the bacteria the opportunity to develop resistance, enabling them to become immune to the medicines.

What is needed, of course, is a multi-prong strategy to prevent the abuse and wrongful use of antibiotics. Drug companies should not over-market their products. Doctors should not over-prescribe. And antibiotics should not be used on animals that are not sick but to fatten them and thus enable higher profits.

Now, the Director-General of the WHO has given a big warning that the growing threat of resistance may mean an end to modern medicine, and the entry of the post-antibiotic era.

Speaking at a meeting of infectious disease experts in Copenhagen last week, Dr Margaret Chan said there was a global crisis in antibiotics caused by rapidly evolving resistance among microbes responsible for common infections that threaten to turn them into untreatable diseases.

Every antibiotic ever developed was at risk of becoming useless.

“A post-antibiotic era means, in effect, an end to modern medicine as we know it. Things as common as strep throat or a child’s scratched knee could once again kill. For patients infected with some drug resistant pathogens, mortality has increased by around 50%,” she said.

“Some sophisticated interventions, like hip replacement, organ transplants, cancer chemotherapy and care of pre-term infants, would become far more difficult or even too dangerous to undertake.”

Dr Chan called for action to restrict the use of antibiotics in food production. “Worldwide, the fact that greater quantities of antibiotics are used in healthy animals than in unhealthy humans, is a cause for great concern,” she said.

She called for measures — doctors prescribing antibiotics appropriately, patients following their treatments — and restrictions on the use of antibiotics in animals.

These actions have, in fact, been suggested for many years, including by the health group REACT, based in Sweden, by health networks such as Health Action International, and locally, by the Consumers’ Association of Penang.

The WHO itself has the scope to do much more in alerting health authorities and in building the capacity, especially of developing countries, to act.

There are forms of TB that have become untreatable because of multi-drug resistance. The TB pathogen has become immune to many antibiotics. This has resulted in a resurgence of the deadly disease. The story is the same for many other pathogens causing other diseases.

As Global Trends reported in June 2011, a worrying development is the discovery of a gene, known as NDM-1, that has the ability to alter bacteria and make them highly resistant to all known drugs, including the most potent antibiotics.

In 2010, there were reports of many such cases in India and Pakistan and in European countries. At the time, only two types of bacteria were found to be hosting the NDM-1 gene – E coli and Klebsiella pneumonia.

But it was then feared that the gene would transfer to other bacteria as well, since it was found to easily jump from one type of bacteria to another. If this happened, antibiotic resistance would spread rapidly, making it difficult to treat many diseases.

These concerns have been proven to be justified. In May 2011, the Times of India published an article based on interviews with British scientists from Cardiff University who had first reported on NDM-1’s existence.

The scientists found that the NDM-1 gene has been jumping among various species of bacteria at “superfast speed” and that it “has a special quality to jump between species without much of a problem”.

While the gene was found only in E coli when it was initially detected in 2006, now the scientists have found NDM-1 in more than 20 different species of bacteria. NDM-1 can move at an unprecedented speed, making more and more species of bacteria drug-resistant.

Since there are very few new antibiotics in the pipeline, when the resistance grows among the whole range of bacteria to the existing drugs, human beings will be more and more at the mercy of the increasingly deadly bacteria.

In May 2011, there was an outbreak of a deadly disease caused by a new strain of the E coli bacteria that killed more than 20 people and affected another 2,000 in Germany.

They were affected by a new strain of the already rare 0104 type of E coli. There are other common types of E coli which normally cause only a mild ailment. The WHO said the variant had “never been seen in an outbreak situation before”.

Although the “normal” E coli usually produces mild sickness in the stomach, the new strain of E coli 0104 causes bloody diarrhoea and severe stomach cramps, while in some of the more serious cases so far, it also causes haemolytic-uraemic syndrome (HUS), which damages blood cells and the kidneys.

A major problem is that the bacterium is resistant to antibiotics. Eradication of these kinds of bacteria is impractical partly because they are able to evolve so rapidly, according to medical experts.

Now that the WHO chief has sounded the alarm bell, health authorities should redouble their efforts to contain the crisis. An “end to modern medicine” and a “post-antibiotic era” are predictions too horrible to imagine.

By  GLOBAL TRENDS By MARTIN KHOR

Related articles